Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Parasit Vectors ; 15(1): 23, 2022 Jan 10.
Article in English | MEDLINE | ID: covidwho-1627901

ABSTRACT

BACKGROUND: Yellow fever virus (YFV) is an arbovirus that, despite the existence of a safe and effective vaccine, continues to cause outbreaks of varying dimensions in the Americas and Africa. Between 2017 and 2019, Brazil registered un unprecedented sylvatic YFV outbreak whose severity was the result of its spread into zones of the Atlantic Forest with no signals of viral circulation for nearly 80 years. METHODS: To investigate the influence of climatic, environmental, and ecological factors governing the dispersion and force of infection of YFV in a naïve area such as the landscape mosaic of Rio de Janeiro (RJ), we combined the analyses of a large set of data including entomological sampling performed before and during the 2017-2019 outbreak, with the geolocation of human and nonhuman primates (NHP) and mosquito infections. RESULTS: A greater abundance of Haemagogus mosquitoes combined with lower richness and diversity of mosquito fauna increased the probability of finding a YFV-infected mosquito. Furthermore, the analysis of functional traits showed that certain functional groups, composed mainly of Aedini mosquitoes which includes Aedes and Haemagogus mosquitoes, are also more representative in areas where infected mosquitoes were found. Human and NHP infections were more common in two types of landscapes: large and continuous forest, capable of harboring many YFV hosts, and patches of small forest fragments, where environmental imbalance can lead to a greater density of the primary vectors and high human exposure. In both, we show that most human infections (~ 62%) occurred within an 11-km radius of the finding of an infected NHP, which is in line with the flight range of the primary vectors. CONCLUSIONS: Together, our data suggest that entomological data and landscape composition analyses may help to predict areas permissive to yellow fever outbreaks, allowing protective measures to be taken to avoid human cases.


Subject(s)
Brazil , Culicidae , Disease Outbreaks , Mosquito Vectors , Yellow Fever/transmission , Aedes/growth & development , Aedes/virology , Animals , Biodiversity , Brazil/epidemiology , Climate , Culicidae/growth & development , Culicidae/virology , Forests , Humans , Mosquito Vectors/classification , Mosquito Vectors/growth & development , Mosquito Vectors/virology , Risk Factors , Yellow Fever/epidemiology
3.
Elife ; 102021 08 20.
Article in English | MEDLINE | ID: covidwho-1513067

ABSTRACT

Identifying the key vector and host species that drive the transmission of zoonotic pathogens is notoriously difficult but critical for disease control. We present a nested approach for quantifying the importance of host and vectors that integrates species' physiological competence with their ecological traits. We apply this framework to a medically important arbovirus, Ross River virus (RRV), in Brisbane, Australia. We find that vertebrate hosts with high physiological competence are not the most important for community transmission; interactions between hosts and vectors largely underpin the importance of host species. For vectors, physiological competence is highly important. Our results identify primary and secondary vectors of RRV and suggest two potential transmission cycles in Brisbane: an enzootic cycle involving birds and an urban cycle involving humans. The framework accounts for uncertainty from each fitted statistical model in estimates of species' contributions to transmission and has has direct application to other zoonotic pathogens.


Subject(s)
Alphavirus Infections/virology , Birds/virology , Culicidae/virology , Disease Reservoirs/virology , Disease Vectors , Ross River virus/pathogenicity , Viral Zoonoses , Alphavirus Infections/transmission , Animals , Host-Pathogen Interactions , Humans , Models, Biological , Queensland , Virulence
4.
Viruses ; 13(6)2021 06 16.
Article in English | MEDLINE | ID: covidwho-1273518

ABSTRACT

We describe the impact of COVID-19 mitigation measures on mosquito-borne diseases in Queensland, Australia, during the first half of 2020. Implementation of restrictions coincided with an atypical late season outbreak of Ross River virus (RRV) characterized by a peak in notifications in April (1173) and May (955) which were greater than 3-fold the mean observed for the previous four years. We propose that limitations on human movement likely resulted in the majority of RRV infections being acquired at or near the place of residence, and that an increase in outdoor activities, such as gardening and bushwalking in the local household vicinity, increased risk of exposure to RRV-infected mosquitoes. In contrast, the precipitous decline in international passenger flights led to a reduction in the number of imported dengue and malaria cases of over 70% and 60%, respectively, compared with the previous five years. This substantial reduction in flights also reduced a risk pathway for importation of exotic mosquitoes, but the risk posed by importation via sea cargo was not affected. Overall, the emergence of COVID-19 has had a varied impact on mosquito-borne disease epidemiology in Queensland, but the need for mosquito surveillance and control, together with encouragement of personal protective measures, remains unchanged.


Subject(s)
COVID-19/prevention & control , Disease Outbreaks/prevention & control , Population Surveillance , Vector Borne Diseases/epidemiology , Alphavirus Infections/epidemiology , Alphavirus Infections/transmission , Animals , COVID-19/epidemiology , Communicable Disease Control/methods , Communicable Disease Control/statistics & numerical data , Culicidae/virology , Disease Outbreaks/statistics & numerical data , Humans , Movement , Queensland/epidemiology , Travel , Vector Borne Diseases/prevention & control , Vector Borne Diseases/transmission
5.
Nat Commun ; 12(1): 3431, 2021 06 08.
Article in English | MEDLINE | ID: covidwho-1262001

ABSTRACT

The current COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We demonstrate that despite the large size of the viral RNA genome (~30 kb), infectious full-length cDNA is readily assembled in vitro by a circular polymerase extension reaction (CPER) methodology without the need for technically demanding intermediate steps. Overlapping cDNA fragments are generated from viral RNA and assembled together with a linker fragment containing CMV promoter into a circular full-length viral cDNA in a single reaction. Transfection of the circular cDNA into mammalian cells results in the recovery of infectious SARS-CoV-2 virus that exhibits properties comparable to the parental virus in vitro and in vivo. CPER is also used to generate insect-specific Casuarina virus with ~20 kb genome and the human pathogens Ross River virus (Alphavirus) and Norovirus (Calicivirus), with the latter from a clinical sample. Additionally, reporter and mutant viruses are generated and employed to study virus replication and virus-receptor interactions.


Subject(s)
Reverse Genetics , SARS-CoV-2/genetics , Amino Acid Sequence , Animals , Base Sequence , Chlorocebus aethiops , Culicidae/virology , Furin/metabolism , Genome, Viral , HEK293 Cells , Humans , Mice , Mutation/genetics , NIH 3T3 Cells , Polymerase Chain Reaction , RAW 264.7 Cells , Receptors, Virus/metabolism , Vero Cells , Viral Proteins/chemistry , Virus Replication
6.
J Med Entomol ; 58(4): 1948-1951, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1123316

ABSTRACT

SARS-CoV-2 is a recently emerged, highly contagious virus and the cause of the current COVID-19 pandemic. It is a zoonotic virus, although its animal origin is not clear yet. Person-to-person transmission occurs by inhalation of infected droplets and aerosols, or by direct contact with contaminated fomites. Arthropods transmit numerous viral, parasitic, and bacterial diseases; however, the potential role of arthropods in SARS-CoV-2 transmission is not fully understood. Thus far, a few studies have demonstrated that SARS-CoV-2 replication is not supported in cells from certain insect species nor in certain species of mosquitoes after intrathoracic inoculation. In this study, we expanded the work of SARS-CoV-2 susceptibility to biting insects after ingesting a SARS-CoV-2-infected bloodmeal. Species tested included Culicoides sonorensis (Wirth & Jones) (Diptera: Ceratopogonidae) biting midges, as well as Culex tarsalis (Coquillett) and Culex quinquefasciatus (Say) mosquitoes (Diptera: Culicidae), all known biological vectors for numerous RNA viruses. Arthropods were allowed to feed on SARS-CoV-2-spiked blood and at a time point postinfection analyzed for the presence of viral RNA and infectious virus. Additionally, cell lines derived from C. sonorensis (W8a), Aedes aegypti (Linnaeus) (Diptera: Culicidae) (C6/36), Cx. quinquefasciatus (HSU), and Cx. tarsalis (CxTrR2) were tested for SARS-CoV-2 susceptibility. Our results indicate that none of the biting insects, nor the insect cell lines evaluated support SARS-CoV-2 replication, suggesting that these species are unable to be biological vectors of SARS-CoV-2.


Subject(s)
Ceratopogonidae/virology , Culicidae/virology , Mosquito Vectors/virology , SARS-CoV-2 , Animals , COVID-19/transmission , Female , Host-Pathogen Interactions
9.
Sci Rep ; 10(1): 11915, 2020 07 17.
Article in English | MEDLINE | ID: covidwho-654201

ABSTRACT

This research addresses public speculation that SARS-CoV-2 might be transmitted by mosquitoes. The World Health Organization has stated "To date there has been no information nor evidence to suggest that the new coronavirus could be transmitted by mosquitoes". Here we provide the first experimental data to investigate the capacity of SARS-CoV-2 to infect and be transmitted by mosquitoes. Three widely distributed species of mosquito; Aedes aegypti, Ae. albopictus and Culex quinquefasciatus, representing the two most significant genera of arbovirus vectors that infect people, were tested. We demonstrate that even under extreme conditions, SARS-CoV-2 virus is unable to replicate in these mosquitoes and therefore cannot be transmitted to people even in the unlikely event that a mosquito fed upon a viremic host.


Subject(s)
Betacoronavirus/physiology , Culicidae/virology , Aedes/virology , Animals , Betacoronavirus/isolation & purification , Chlorocebus aethiops , Culex/virology , Insect Vectors/virology , SARS-CoV-2 , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL